Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661536

RESUMO

Silver(I) complexes with proline and hydroxyproline were synthesized and structurally characterized and crystal structure analysis shows that the formulas of the compounds are {[Ag2(Pro)2(NO3)]NO3}n (AgPro) (Pro = L-proline) and {[Ag2(Hyp)2(NO3)]NO3}n (AgHyp) (Hyp = trans-4-hydroxy-L-proline). Both complexes crystallize in the monoclinic lattice with space group P21 with a carboxylate bidentate-bridging coordination mode of the organic ligands Pro and Hyp (with NH2+ and COO- groups in zwitterionic form). Both complexes have a distorted seesaw (C2v) geometry around one silver(I) ion with τ4 values of 58% (AgPro) and 51% (AgHyp). Moreover, the results of spectral and thermal analyses correlate with the structural ones. 1H and 13C NMR spectra confirm the complexes species' presence in the DMSO biological testing medium and their stability in the time range of the bioassays. In addition, molar conductivity measurements indicate complexes' behaviour like 1 : 1 electrolytes. Both complexes showed higher or the same antibacterial activity against Bacillus cereus, Pseudomonas aeruginosa and Staphylococcus aureus as AgNO3 (MIC = 0.063 mM) and higher than silver(I) sulfadiazine (AgSD) (MIC > 0.5 mM) against Pseudomonas aeruginosa. In addition, complex AgPro exerted a strong cytotoxic effect against the tested MDA-MB-231 and Jurkat cancer cell lines (IC50 values equal to 3.7 and 3.0 µM, respectively) compared with AgNO3 (IC50 = 6.1 (5.7) µM) and even significantly higher selectivity than cisplatin (cisPt) against MDA-MB-231 cancer cell lines (SI = 3.05 (AgPro); 1.16 (cisPt), SI - selectivity index). The binding constants and the number of binding sites (n) of AgPro and AgHyp complexes with bovine serum albumin (BSA) were determined at four different temperatures, and the zeta potential of BSA in the presence of silver(I) complexes was also measured. The in ovo method shows the safety of the topical and intravenous application of AgPro and AgHyp. Moreover, the complexes' bioavailability was verified by lipophilicity evaluation from the experimental and theoretical points of view.

2.
Front Pharmacol ; 15: 1216199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464730

RESUMO

Introduction: Based on extensive data from oncology research, the use of phytochemicals or plant-based nutraceuticals is considered an innovative tool for cancer management. This research aimed to analyze the oncostatic properties of Salvia officinalis L. [Lamiaceae; Salviae officinalis herba] using animal and in vitro models of breast carcinoma (BC). Methods: The effects of dietary administered S. officinalis in two concentrations (0.1%/SAL 0.1/and 1%/SAL 1/) were assessed in both syngeneic 4T1 mouse and chemically induced rat models of BC. The histopathological and molecular evaluations of rodent carcinoma specimens were performed after the autopsy. Besides, numerous in vitro analyses using two human cancer cell lines were performed. Results and Conclusion: The dominant metabolites found in S. officinalis propylene glycol extract (SPGE) were representatives of phenolics, specifically rosmarinic, protocatechuic, and salicylic acids. Furthermore, the occurrence of triterpenoids ursolic and oleanolic acid was proved in SPGE. In a mouse model, a non-significant tumor volume decrease after S. officinalis treatment was associated with a significant reduction in the mitotic activity index of 4T1 tumors by 37.5% (SAL 0.1) and 31.5% (SAL 1) vs. controls (set as a blank group with not applied salvia in the diet). In addition, salvia at higher doses significantly decreased necrosis/whole tumor area ratio by 46% when compared to control tumor samples. In a rat chemoprevention study, S. officinalis at a higher dose significantly lengthened the latency of tumors by 8.5 days and significantly improved the high/low-grade carcinomas ratio vs. controls in both doses. Analyses of the mechanisms of anticancer activities of S. officinalis included well-validated prognostic, predictive, and diagnostic biomarkers that are applied in both oncology practice and preclinical investigation. Our assessment in vivo revealed numerous significant changes after a comparison of treated vs. untreated cancer cells. In this regard, we found an overexpression in caspase-3, an increased Bax/Bcl-2 ratio, and a decrease in MDA, ALDH1, and EpCam expression. In addition, salvia reduced TGF-ß serum levels in rats (decrease in IL-6 and TNF-α levels were with borderline significance). Evaluation of epigenetic modifications in rat cancer specimens in vivo revealed a decline in the lysine methylations of H3K4m3 and an increase in lysine acetylation in H4K16ac levels in treated groups. Salvia decreased the relative levels of oncogenic miR21 and tumor-suppressive miR145 (miR210, miR22, miR34a, and miR155 were not significantly altered). The methylation of ATM and PTEN promoters was decreased after S. officinalis treatment (PITX2, RASSF1, and TIMP3 promoters were not altered). Analyzing plasma metabolomics profile in tumor-bearing rats, we found reduced levels of ketoacids derived from BCAAs after salvia treatment. In vitro analyses revealed significant anti-cancer effects of SPGE extract in MCF-7 and MDA-MB-231 cell lines (cytotoxicity, caspase-3/-7, Bcl-2, Annexin V/PI, cell cycle, BrdU, and mitochondrial membrane potential). Our study demonstrates the significant chemopreventive and treatment effects of salvia haulm using animal or in vitro BC models.

3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256271

RESUMO

Caffeic acid (CA) is one of the most abundant natural compounds present in plants and has a broad spectrum of beneficial pharmacological activities. However, in some cases, synthetic derivation of original molecules can expand their scope. This study focuses on the synthesis of caffeic acid phosphanium derivatives with the ambition of increasing their biological activities. Four caffeic acid phosphanium salts (CAPs) were synthesized and tested for their cytotoxic, antibacterial, antifungal, and amoebicidal activity in vitro, with the aim of identifying the best area for their medicinal use. CAPs exhibited significantly stronger cytotoxic activity against tested cell lines (HeLa, HCT116, MDA-MB-231 MCF-7, A2058, PANC-1, Jurkat) in comparison to caffeic acid. Focusing on Jurkat cells (human leukemic T cell lymphoma), the IC50 value of CAPs ranged from 0.9 to 8.5 µM while IC50 of CA was >300 µM. Antimicrobial testing also confirmed significantly higher activity of CAPs against selected microbes in comparison to CA, especially for Gram-positive bacteria (MIC 13-57 µM) and the yeast Candida albicans (MIC 13-57 µM). The anti-Acanthamoeba activity was studied against two pathogenic Acanthamoeba strains. In the case of A. lugdunensis, all CAPs revealed a stronger inhibitory effect (EC50 74-3125 µM) than CA (>105 µM), while in A. quina strain, the higher inhibition was observed for three derivatives (EC50 44-291 µM). The newly synthesized quaternary phosphanium salts of caffeic acid exhibited selective antitumor action and appeared to be promising antimicrobial agents for topical application, as well as potential molecules for further research.


Assuntos
Anti-Infecciosos , Antiprotozoários , Ácidos Cafeicos , Humanos , Sais , Anti-Infecciosos/farmacologia , Antiprotozoários/farmacologia , Células HeLa
4.
J Appl Biomed ; 21(4): 218-227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112461

RESUMO

Spisulosine (1-deoxysphinganine) is a sphingoid amino alcohol isolated from the sea clams that showed potent antiproliferative activity against a broad spectrum of solid tumors but failed in clinical trials due to neurotoxicity. However, its structural similarity to other bioactive sphingoids, interesting mode of action, and appreciable potency against cancer cells make it a suitable lead for future anticancer drug development. The present study was conducted to elucidate mechanisms of the antiproliferative/cytotoxic effects of newly synthesized spisulosine analog homospisulosine (KP7). The evaluation was performed on cervical carcinoma cells, representing an in vitro model of one of the most common cancer types and a significant worldwide cause of women's cancer mortality. Treatment with homospisulosine (2.0 µM) for 24, 48, and 72 h significantly inhibited the growth of HeLa cells in vitro and induced apoptosis detectable by DNA fragmentation, externalization of phosphatidylserine, dissipation of mitochondrial membrane potential, activation of caspase-3 and cleavage of PARP. In addition, treating HeLa cells with spisulosine increased p27 and Bcl-2 on protein levels and phosphorylation of Bcl-2 on Ser70 residue. These results support the potential for spisulosine analogs represented here by homospisulosine for future therapeutic development.


Assuntos
Antineoplásicos , Carcinoma , Feminino , Humanos , Células HeLa , Regulação para Cima , Fosforilação , Apoptose , Antineoplásicos/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-37789138

RESUMO

Cancer cell plasticity plays a crucial role in tumor initiation, progression, and metastasis and is implicated in the multiple cancer defense mechanisms associated with therapy resistance and therapy evasion. Cancer resistance represents one of the significant obstacles in the clinical management of cancer. Some reversal chemosensitizing agents have been developed to resolve this serious clinical problem, but they have not yet been proven applicable in oncological practice. Activated nuclear factor kappa B (NF-κB) is a frequently observed biomarker in chemoresistant breast cancer (BC). Therefore, it denotes an attractive cellular target to mitigate cancer resistance. We summarize that flavonoids represent an essential class of phytochemicals that act as significant regulators of NF-κB signaling and negatively affect the fundamental cellular processes contributing to acquired cell plasticity and drug resistance. In this regard, flavokawain A, icariin, alpinetin, genistein, wogonin, apigenin, oroxylin A, xanthohumol, EGCG, hesperidin, naringenin, orientin, luteolin, delphinidin, fisetin, norwogonin, curcumin, cardamonin, methyl gallate and catechin-3-O-gallate, ampelopsin, puerarin, hyperoside, baicalein, paratocarpin E, and kaempferol and also synthetic flavonoids such as LFG-500 and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone have been reported to specifically interfere with the NF-κB pathway with complex signaling consequences in BC cells and could be potentially crucial in re-sensitizing unresponsive BC cases. The targeting NF-κB by above-mentioned flavonoids includes the modification of tumor microenvironment and epithelial-mesenchymal transition, growth factor receptor regulations, and modulations of specific pathways such as PI3K/AKT, MAP kinase/ERK, and Janus kinase/signal transduction in BC cells. Besides that, NF-κB signaling in BC cells modulated by flavonoids has also involved the regulation of ATP-binding cassette transporters, apoptosis, autophagy, cell cycle, and changes in the activity of cancer stem cells, oncogenes, or controlling of gene repair. The evaluation of conventional therapies in combination with plasticity-regulating/sensitizing agents offers new opportunities to make significant progress towards a complete cure for cancer.

6.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511455

RESUMO

Despite the decreasing trend in mortality from colorectal cancer, this disease still remains the third most common cause of death from cancer. In the present study, we investigated the antiproliferative and pro-apoptotic effects of (2S,3S,4R)-2-tridecylpyrrolidine-3,4-diol hydrochloride on colon cancer cells (Caco-2 and HCT116). The antiproliferative effect and IC50 values were determined by the MTT and BrdU assays. Flow cytometry, qRT-PCR and Western blot were used to study the cellular and molecular mechanisms involved in the induction of apoptotic pathways. Colon cancer cell migration was monitored by the scratch assay. Concentration-dependent cytotoxic and antiproliferative effects on both cell lines, with IC50 values of 3.2 ± 0.1 µmol/L (MTT) vs. 6.46 ± 2.84 µmol/L (BrdU) for HCT116 and 2.17 ± 1.5 µmol/L (MTT) vs. 1.59 ± 0.72 µmol/L (BrdU), for Caco-2 were observed. The results showed that tridecylpyrrolidine-induced apoptosis was associated with the externalization of phosphatidylserine, reduced mitochondrial membrane potential (MMP) accompanied by the activation of casp-3/7, the cleavage of PARP and casp-8, the overexpression of TNF-α and FasL and the dysregulation of Bcl-2 family proteins. Inhibition of the migration of treated cells across the wound area was detected. Taken together, our data show that the anticancer effects of tridecylpyrrolidine analogues in colon cancer cells are mediated by antiproliferative activity, the induction of both extrinsic and intrinsic apoptotic pathways and the inhibition of cell migration.


Assuntos
Apoptose , Neoplasias do Colo , Humanos , Bromodesoxiuridina/farmacologia , Células CACO-2 , Transdução de Sinais , Neoplasias do Colo/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial
7.
J Biol Inorg Chem ; 28(6): 591-611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498326

RESUMO

A series of novel Ga(III)-pyridine carboxylates ([Ga(Pic)3]·H2O (GaPic; HPic = picolinic acid), H3O[Ga(Dpic)2]·H2O (GaDpic; H2Dpic = dipicolinic acid), [Ga(Chel)(H2O)(OH)]2·4H2O (GaChel; H2Chel = chelidamic acid) and [Ga(Cldpic)(H2O)(OH)]2 (GaCldpic; H2Cldpic = 4-chlorodipicolinic acid)) have been synthesized by simple one-step procedure. Vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis and X-ray diffraction confirmed complexes molecular structure, inter and intramolecular interactions and their influence to spectral and thermal properties. Moreover, complex species speciation was described in Ga(III)-HPic and Ga(III)-H2Dpic systems by potentiometry and 1H NMR spectroscopy and mononuclear complex species were determined; [Ga(Pic)2]+ (logß021 = 16.23(6)), [Ga(Pic)3] (logß031 = 20.86(2)), [Ga(Dpic)2]- (logß021 = 15.42(9)) and [Ga(Dpic)2(OH)]2- (logß-121 = 11.08(4)). To confirm the complexes stability in 1% DMSO (primary solvent for biological testing), timescale 1H NMR spectra were measured (immediately after dissolution up to 96 h). Antimicrobial activity evaluated by IC50 (0.05 mM) is significant for GaDpic and GaCldpic against difficult to treat and multi-resistant P. aeruginosa. On the other hand, the GaPic complex is most effective against Jurkat, MDA-MB-231 and A2058 cancer cell lines and significantly also decreases the HepG2 cancer cells viability at 75 and 100 µM concentrations in a relatively short time (up to 48 h). In addition, fluorescence measurements have been used to elucidate bovine serum albumin binding activity between ligands, Ga(III) complexes and bovine serum albumin.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Soroalbumina Bovina/metabolismo , Piridinas/farmacologia , Estrutura Molecular , Linhagem Celular , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes
8.
Acta Crystallogr C Struct Chem ; 79(Pt 8): 316-323, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466222

RESUMO

A new zirconium(IV) complex, diaquabis(8-hydroxyquinoline-2-carboxylato-κ3N,O2,O8)zirconium(IV) dimethylformamide disolvate, [Zr(C10H5NO3)2(H2O)2]·2C3H7NO or [Zr(QCa)2(H2O)2]·2DMF (1) (HQCaH is 8-hydroxyquinoline-2-carboxylic acid and DMF is dimethylformamide), was prepared and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray structure analysis. Complex 1 is a mononuclear complex in which the ZrIV atoms sit on the twofold axis and they are octacoordinated by two N and six O atoms of two tridentate anionic QCa2- ligands, and two aqua ligands. Outside the coordination sphere are two DMF molecules bound to the complex unit by hydrogen bonds. The structure and stability of complex 1 in dimethyl sulfoxide were verified by NMR spectroscopy. The cytotoxic properties of 1 and HQCaH were studied in vitro against eight cancer cell lines, and their selectivity was tested on the BJ-5ta noncancerous cell line. Both the complex and HQCaH exhibited low activity, with IC50 > 200 µM. DNA and human serum albumin (HSA) binding studies showed that 1 binds to calf thymus (CT) DNA via intercalation and is able to bind to the tryptophan binding site of HSA (Trp-214).


Assuntos
Complexos de Coordenação , Zircônio , Humanos , Zircônio/farmacologia , Complexos de Coordenação/química , Ligantes , Albumina Sérica Humana , Dimetilformamida , Cristalografia por Raios X , Ligação de Hidrogênio , Oxiquinolina/farmacologia , DNA/química
9.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373500

RESUMO

There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.


Assuntos
Antineoplásicos , Chalconas , Neoplasias , Humanos , Chalconas/química , Neoplasias/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
10.
J Inorg Biochem ; 246: 112266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37271621

RESUMO

Two silver(I) complexes with biologically relevant heterocyclic ligands, pyrrole and furan-2- carboxylic acid, were synthesized and their composition was confirmed using elemental, spectral, thermal and structural analyses. The {[Ag(Py2c)]}n (AgPy2c, Py2c = pyrrole-2-carboxylate) and {[Ag(Fu2c)]}n (AgFu2c, Fu2c = furan-2-carboxylate) solubility and stability in biological test stock solution were confirmed by 1H NMR spectroscopy. The X-ray analysis has enabled us to determine typical argentophilic interactions and bridging carboxylate coordination mode of both ligands. Potentiometric data analysis by BSTAC program resulted in the determination of the stability constant of only one species, i.e., the ML (M = Ag+, L = Fu2c-), log ßML = 0.59 ± 0.04. Antimicrobial and anticancer tests were performed against selected microorganisms and cell lines with new silver(I) complexes and compared with AgSD (silver(I) sulfadiazine) and cisplatin. From their microbial toxicity point of view, selectivity was determined against lactobacilli (AgPy2c is 8× more effective against S. aureus and E. coli and AgFu2c is 8× more effective against E. coli and 4× against S. aureus). AgFu2c significant anticancer activity was determined against Jurkat cell lines (IC50 = 8.00 µM) and was similar to cisPt (IC50 = 6.3 µM) similarly to its selectivity (SI (AgFu2c) = 7.3, SI (cisPt) = 6.4, SI = selectivity index). In addition, cell cycle arrest was observed already in the Sub-G0 phase during a flow cytometry experiment. To evaluate the AgPy2c and AgFu2c bioavailability we also discuss their Lipinski's Rule of Five.


Assuntos
Anti-Infecciosos , Complexos de Coordenação , Prata/farmacologia , Prata/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Furanos/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
11.
Front Pharmacol ; 14: 1160068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089930

RESUMO

Significant limitations of the reactive medical approach in breast cancer management are clearly reflected by alarming statistics recorded worldwide. According to the WHO updates, breast malignancies become the leading cancer type. Further, the portion of premenopausal breast cancer cases is permanently increasing and demonstrates particularly aggressive patterns and poor outcomes exemplified by young patients with triple-negative breast cancer that lacks targeted therapy. Accumulating studies suggest the crucial role of stem cells in tumour biology, high metastatic activity, and therapy resistance of aggressive breast cancer. Therefore, targeting breast cancer stem cells is a promising treatment approach in secondary and tertiary breast cancer care. To this end, naturally occurring substances demonstrate high potential to target cancer stem cells which, however, require in-depth analysis to identify effective anti-cancer agents for cost-effective breast cancer management. The current article highlights the properties of flavonoids particularly relevant for targeting breast cancer stem cells to mitigate therapy resistance. The proposed approach is conformed with the principles of 3P medicine by applying predictive diagnostics, patient stratification and treatments tailored to the individualised patient profile. Expected impacts are very high, namely, to overcome limitations of reactive medical services improving individual outcomes and the healthcare economy in breast cancer management. Relevant clinical applications are exemplified in the paper.

12.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983038

RESUMO

Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.


Assuntos
Antineoplásicos , Chalconas , Neoplasias Gastrointestinais , Humanos , Chalconas/farmacologia , Chalconas/uso terapêutico , Chalconas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Neoplasias Gastrointestinais/tratamento farmacológico
13.
Growth Factors ; 41(2): 57-70, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36825505

RESUMO

In this study, the bone marrow mesenchymal stem cells conditioned media (BMMSC-CM) obtained by conditioning for 24(CM24), 48(CM48) and 72(CM72) hours was characterised. In vitro, the impact of BMMSC-CM on the astrocyte migratory response and oligodendrocyte density was evaluated using the scratch model. The proteomic profiles of individual secretomes were analysed by mass spectrometry and the concentrations of four selected neurotrophins (BDNF, NGF, GDNF and VEGF) were determined by ELISA. Our results revealed an increased number of proteins at CM72, many of which are involved in neuroregenerative processes. ELISA documented a gradual increase in the concentration of two neurotrophins (NGF, VEGF), peaking at CM72. In vitro, the different effect of individual BMMSC-CM on astrocyte migration response and oligodendrocyte density was observed, most pronounced with CM72. The outcomes demonstrate that the prolonged conditioning results in increased release of detectable proteins, neurotrophic factors concentration and stronger effect on reparative processes in neural cell cultures.


Assuntos
Células-Tronco Mesenquimais , Proteômica , Meios de Cultivo Condicionados/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neuroglia/metabolismo , Fatores de Crescimento Neural/metabolismo
14.
Plants (Basel) ; 12(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771693

RESUMO

Lichen metabolites represent a wide range of substances with a variety of biological effects. The present study was designed to analyze the potential antiproliferative, antimicrobial and antioxidative effects of several extracts from lichens (Pseudevernia furfuracea, Lobaria pulmonaria, Cetraria islandica, Evernia prunastri, Stereocaulon tomentosum, Xanthoria elegans and Umbilicaria hirsuta) and their secondary metabolites (atranorin, physodic acid, evernic acid and gyrophoric acid). The crude extract, as well as the isolated metabolites, showed potent antiproliferative, cytotoxic activity on a broad range of cancer cell lines in 2D (monolayer) and 3D (spheroid) models. Furthermore, antioxidant (2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) and in vitro antimicrobial activities were assessed. Data showed that the lichen extracts, as well as the compounds present, possessed biological potential in the studied assays. It was also observed that the extracts were more efficient and their major compounds showed strong effects as antiproliferative, antioxidant and antibacterial agents. Moreover, we demonstrated the 2D and 3D models' importance to drug discovery for further in vivo studies. Despite the fact that lichen compounds have been neglected by the scientific community for long periods, nowadays they are objects of investigation based on their promising effects.

15.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293123

RESUMO

This study was focused on investigating the antiproliferative effects of chalcone hybrids in melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the most potent and was selected for further antiproliferative mechanism studies. This in vitro study revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, increased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it may be useful as an antimelanoma agent in humans.


Assuntos
Chalcona , Chalconas , Melanoma , Humanos , Chalcona/farmacologia , Ciclina B1/metabolismo , Chalconas/farmacologia , Fosforilação , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Acridinas/farmacologia , Citocromos c/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Apoptose , Dano ao DNA , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Melanoma/tratamento farmacológico
16.
Life (Basel) ; 12(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36143480

RESUMO

Natural products include a diverse set of compounds of drug discovery that are currently being actively used to target tumor angiogenesis. In the present study, we evaluated the anti-angiogenic activities of secondary metabolite usnic acid isolated from Usena antarctica. We investigated the in vitro effects on proliferation, migration, and tube formation of VEGF- and bFGF-stimulated HUVECs. Ex ovo anti-angiogenic activity was evaluated using the CAM assay. Our findings demonstrated that usnic acid in the concentration of 33.57 µM inhibited VEGF (25 ng/mL) and bFGF (30 ng/mL)-induced HUVECs proliferation, migration, and tube formation. The ex ovo CAM model was used to confirm the results obtained from in vitro studies. VEGF- and bFGF-induced vessel formation was inhibited by usnic acid after 72 h in over 2-fold higher concentrations compared to in vitro. Subsequently, histological sections of affected chorioallantoic membranes were stained with hematoxylin-eosin and alcian blue to determine the number and diameter of vessels as well as the thickness of the individual CAM layers (ectoderm, mesoderm, endoderm). Usnic acid was able to suppress the formation of VEGF- and bFGF-induced vessels with a diameter of less than 100 µm, which was demonstrated by the reduction of mesoderm thickness as well.

17.
Pregnancy Hypertens ; 29: 72-85, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35803199

RESUMO

Hypertensive disorders in pregnancy represent severe complications of pregnancy, which, if not treated, can result in serious health consequences for the mother and the child. Flavonoids are bioactive secondary metabolites commonly found in fruits, vegetables, green tea, whole grains, and medicinal plants. Flavonoids exert potent protective efficacy in experimental models of hypertensive disorders in pregnancy, especially preeclampsia, demonstrated through their capacity to modulate inflammatory responses, oxidative stress, and vascular dysfunction. In addition to their potential as therapeutics, flavonoids or flavonoid-rich food could be helpful to decrease the risk of hypertensive disorders in pregnancy when included in the diet pattern before and during pregnancy. However, the clinical evaluation of the potential capacity of flavonoids in hypertensive disorders in pregnancy is insufficient. Due to promising results from experimental studies, we highlight the need for the evaluation of flavonoids also in an appropriate clinical setting, which can be, together with proper preventive strategies, helpful in the overall management of hypertensive disorders in pregnancy.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Criança , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Hipertensão Induzida pela Gravidez/tratamento farmacológico , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/prevenção & controle , Gravidez , Chá , Verduras
18.
Life (Basel) ; 12(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35629433

RESUMO

Phellodendron amurense Rupr. is medicinal plant used for supplemental therapy of various diseases based on their positive biological activities. The aim of this study was evaluated the main metabolite, safety of application and anticancer potential. Berberine was determined by HPLC as main alkaloid. Harmful character was determined by irritation test in ovo. The potential cancerogenic effect was studied in vitro on a cellular level, in ovo by CAM assay and in vivo on whole organism Artemia franciscana. Extract from the bark of Phellodendron amurense showed antiproliferative and antiangiogenic effects. The results of our work showed promising anticancer effects based also on the inhibition of angiogenesis with minimum negative effects.

19.
Pharmaceutics ; 14(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35335879

RESUMO

Although new chemotherapy significantly increased the survival of breast cancer (BC) patients, the use of these drugs is often associated with serious toxicity. The discovery of novel anticancer agents for BC therapy is expected. This study was conducted to explore the antiproliferative effect of newly synthesized indole chalcone derivative ZK-CH-11d on human BC cell lines. MTT screening, flow cytometry, Western blot, and fluorescence microscopy were used to evaluate the mode of cell death. ZK-CH-11d significantly suppressed the proliferation of BC cells with minimal effect against non-cancer cells. This effect was associated with cell cycle arrest at the G2/M phase and apoptosis induction. Apoptosis was associated with cytochrome c release, increased activity of caspase 3 and caspase 7, PARP cleavage, reduced mitochondrial membrane potential, and activation of the DNA damage response system. Furthermore, our study demonstrated that ZK-CH-11d increased the AMPK phosphorylation with simultaneous inhibition of the PI3K/Akt/mTOR pathway indicating autophagy initiation. However, chloroquine, an autophagy inhibitor, significantly potentiated the cytotoxic effect of ZK-CH-11d in MDA-MB-231 cells indicating that autophagy is not principally involved in the antiproliferative effect of ZK-CH-11d. Taking together the results from our experiments, we assume that autophagy was activated as a defense mechanism in treated cells trying to escape from chalcone-induced harmful effects.

20.
Front Chem ; 10: 836795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242741

RESUMO

The biocompatible nanosuspension of CuS nanoparticles (NPs) using bovine serum albumin (BSA) as a capping agent was prepared using a two-stage mechanochemical approach. CuS NPs were firstly synthetized by a high-energy planetary ball milling in 15 min by milling elemental precursors. The stability of nanoparticles in the simulated body fluids was studied, revealing zero copper concentration in the leachates, except simulated lung fluid (SLF, 0.015%) and simulated gastric fluid (SGF, 0.078%). Albumin sorption on CuS NPs was studied in static and dynamic modes showing a higher kinetic rate for the dynamic mode. The equilibrium state of adsorption was reached after 90 min with an adsorption capacity of 86 mg/g compared to the static mode when the capacity 59 mg/g was reached after 2 h. Then, a wet stirred media milling in a solution of BSA was introduced to yield the CuS-BSA nanosuspension, being stable for more than 10 months, as confirmed by photon cross-correlation spectroscopy. The fluorescent properties of the nanosuspension were confirmed by photoluminescence spectroscopy, which also showed that tryptophan present in the BSA could be closer to the binding site of CuS than the tyrosine residue. The biological activity was determined by in vitro tests on selected cancer and non-tumor cell lines. The results have shown that the CuS-BSA nanosuspension inhibits the metabolic activity of the cells as well as decreases their viability upon photothermal ablation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...